

DGRec: Graph Neural Network for Recommendation with Diversified Embedding Generation

Liangwei Yang* University of Illinois at Chicago Chicago, USA Iyang84@uic.edu

Jiankai Sun ByteDance Inc. Seattle, USA jiankai.sun@bytedance.com Shengjie Wang ByteDance Inc. Seattle, USA shengjie.wang@bytedance.com

Xiaolong Liu, Philip S. Yu University of Illinois at Chicago Chicago, USA {xliu262,psyu}@uic.edu Yunzhe Tao ByteDance Inc. Seattle, USA yunzhe.tao@bytedance.com

Taiqing Wang ByteDance Inc. Seattle, USA taiqing.wang@bytedance.com

WSDM 2023 Code: https://github.com/YangLiangwei/DGRec.

Reported by liang li

Motivation

Motivation:

- The redundancy of the aggregated neighbors and resulting in poor diversity of the recommended list.
- Trapping users in a small subset of familiar items without exploring the vast majority of others.

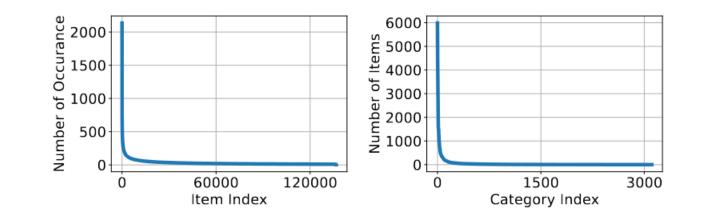
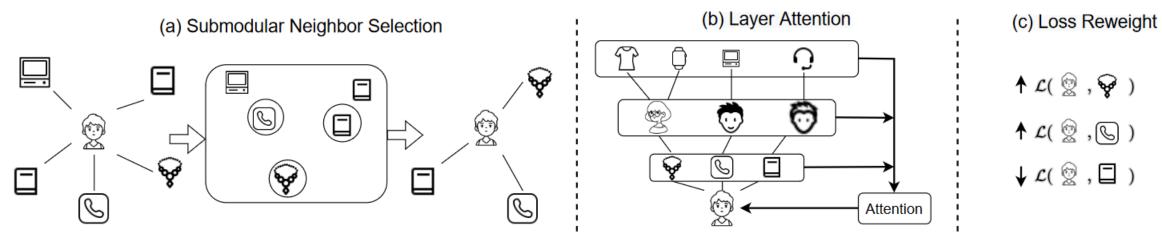


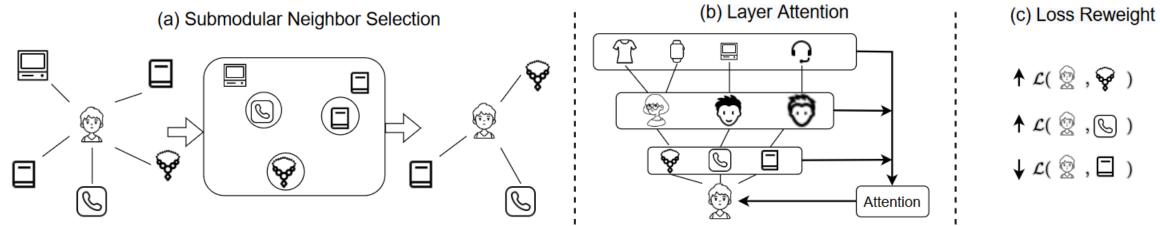
Figure 1: Long tail distribution in Recommender System on TaoBao dataset [49].

Problem Statement



 $\mathcal{U} = \{u_1, u_2, ..., u_{|\mathcal{U}|}\} \quad C(\cdot) \text{ that maps each item to its category}$ $I = \{i_1, i_2, ..., i_{|\mathcal{I}|}\} \quad \mathbf{R} \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{I}|} \quad \mathcal{G} = (\mathcal{V}, \mathcal{E}) \quad \mathcal{V} = \mathcal{U} \cup \mathcal{I}$

Method



$$\mathbf{e}_{u}^{(l+1)} = \mathbf{e}_{u}^{(l)} \oplus \text{AGG}^{(l+1)}(\{\mathbf{e}_{i}^{(l)} \mid i \in \mathcal{N}_{u}\}),$$
(1)

$$f(v|A) \ge f(v|B) \quad \forall A \subset B \subset V, \ v \in V \text{ and } v \notin B.$$
 (2)

 $f(v|A) \coloneqq f(\{v\} \cup A) - f(A)$

对所有
$$X, Y \subseteq \Omega,$$
其中 $X \subseteq Y,$ 则对所有 $x \in \Omega \setminus Y,$ 有
 $f(X \cup \{x\}) - f(X) \ge f(Y \cup \{x\}) - f(Y)$

$$\mathbf{E}^{(0)} = \left(\mathbf{e}_1^{(0)}, \mathbf{e}_2^{(0)}, \dots, \mathbf{e}_{|\mathcal{U}|+|\mathcal{I}|}^{(0)}\right),$$

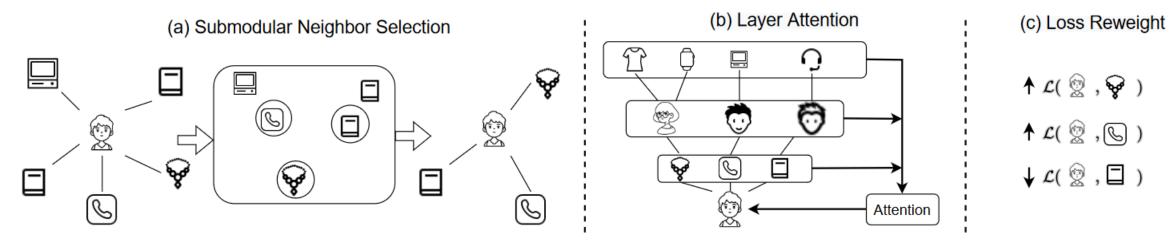
$$\mathbf{e}_{u}^{(l+1)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{(l)},$$

$$\mathbf{e}_{u}^{(l+1)} = \sum_{i \in \mathcal{N}_{u}} \frac{1}{\sqrt{|\mathcal{N}_{u}|}\sqrt{|\mathcal{N}_{i}|}} \mathbf{e}_{i}^{(l)},$$
(4)

$$\mathbf{e}_i^{(l+1)} = \sum_{u \in \mathcal{N}_i} \frac{1}{\sqrt{|\mathcal{N}_i|} \sqrt{|\mathcal{N}_u|}} \mathbf{e}_u^{(l)},$$

(3)

Method

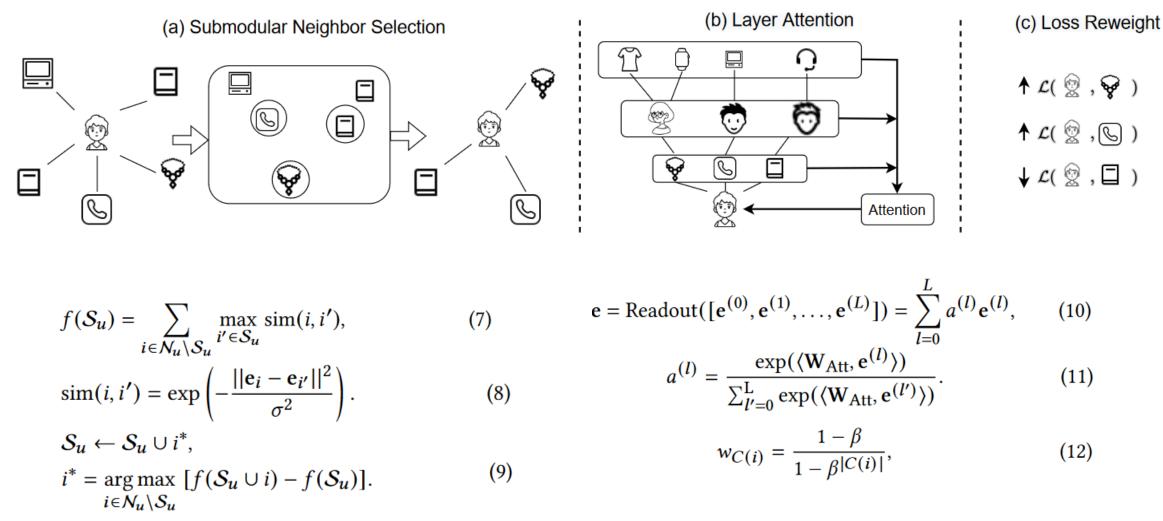


$$\mathbf{e}_{u} = \text{Layer}_{\text{Attention}} \left(\mathbf{e}_{u}^{(0)}, \mathbf{e}_{u}^{(1)}, \dots, \mathbf{e}_{u}^{(\text{layer num})} \right),$$

$$\mathbf{e}_{i} = \text{Layer}_{\text{Attention}} \left(\mathbf{e}_{i}^{(0)}, \mathbf{e}_{i}^{(1)}, \dots, \mathbf{e}_{i}^{(\text{layer num})} \right).$$

$$\mathcal{L} = \sum_{(u,i) \in \mathcal{E}} w_{C(i)} \mathcal{L}_{bpr}(u, i, j) + \lambda \|\Theta\|_{2}^{2}, \qquad (6)$$

Method



Experiments

Table 1: Statistics of the Datasets

Dataset	TaoBao	Beauty	
Users	82,633	8,159	
Items	136,710	5,862	
Interactions	4,230,631	98,566	
Categories	3,108	41	
Average Category Size	43.986	139.595	

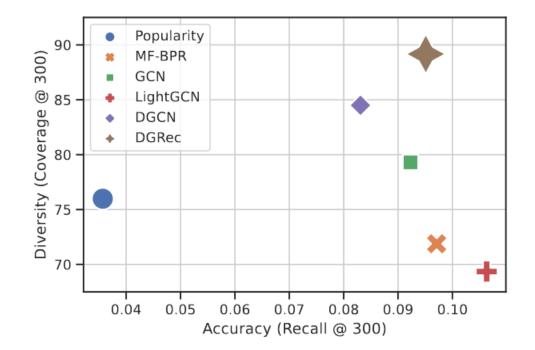


Figure 3: Accuracy-Diversity trade-off comparison on TaoBao dataset. The upper-right model is enlarged.

Table 2: Overall comparison on TaoBao dataset, the best and second-best results are in bold and underlined, respectively.

Method	TaoBao					
	Recall@100	Recall@300	HR@100	HR@300	Coverage@100	Coverage@300
Popularity	0.0186	0.0357	0.1496	0.2562	38.2449	75.9837
MF-BPR [29]	0.0487	0.0971	0.3103	0.4889	34.0812	71.8802
GCN [18]	0.0446	0.0923	0.2840	0.4634	37.2577	79.2985
LightGCN [14]	0.0528	0.1063	0.3261	0.5097	32.7069	69.3502
DGCN [49]	0.0394	0.0831	0.2634	0.4369	38.1183	84.4989
DGRec	0.0472	0.0951	0.3026	0.4817	39.0597	89.1684

Table 3: Overall comparison on Beauty dataset, the best and second-best results are in bold and underlined, respectively.

Method	Beauty					
	Recall@100	Recall@300	HR@100	HR@300	Coverage@100	Coverage@300
Popularity	0.1012	0.2096	0.1833	0.3124	16.0213	27.9336
MF-BPR [29]	0.2310	0.3863	0.3404	0.4966	15.8728	25.6659
GCN [18]	0.2388	0.3897	0.3423	0.3897	16.5311	25.5634
LightGCN [14]	0.2517	0.4205	0.3688	0.5318	15.0203	23.9421
DGCN [49]	0.2395	0.3790	0.3418	0.4792	18.2876	26.9694
DGRec	0.2399	0.3915	0.3420	0.5021	19.0557	27.5704

Experiments

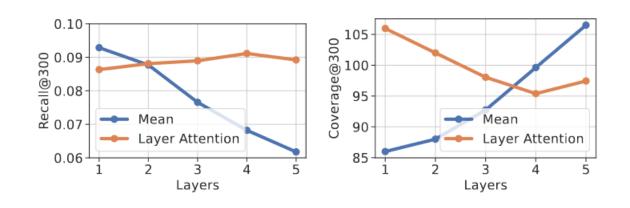


Figure 4: Layer combination experiments on TaoBao dataset. Mean combines embedding learned from different layers by mean average. Layer attention combines these embeddings by the attention module illustrated in Section 3.3.

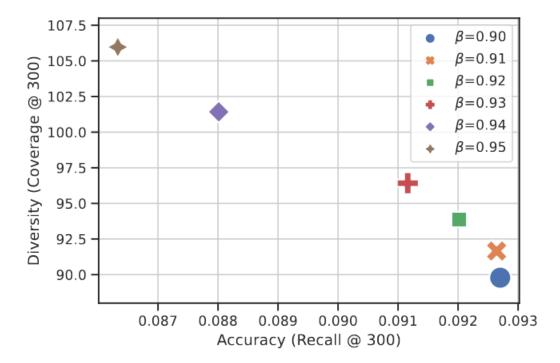


Figure 5: Accuracy-diversity trade-off by loss reweighting.

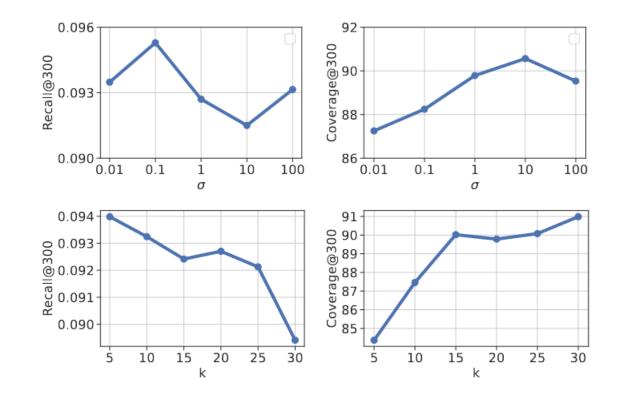


Figure 6: Parameter sensitivity of σ and k. σ controls the similarity computation and k is the number of selected neighbors.

Experiments

Table 4: Ablation study on TaoBao dataset. We show DGRec' performance when removing each of the modules.

Method	R@300	HR@300	C@300
DGRec	0.0951	0.4817	89.1684
w/o Submodular selection	0.0982	0.4869	84.9129
w/o Layer attention	0.1009	0.4976	82.9553
w/o Loss reweighting	0.0886	0.4612	79.3286

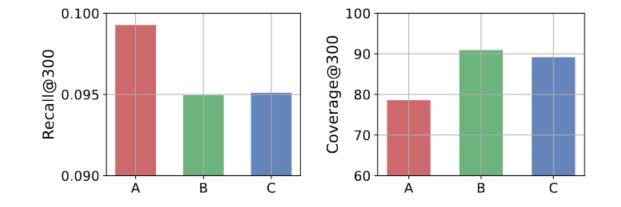


Figure 7: The influence of different submodular functions. A: bucket coverage function, B: category coverage function, and C: facility location function.

Thanks